Worst VaR Scenarios

نویسندگان

  • Paul Embrechts
  • Andrea Höing
  • Giovanni Puccetti
  • Pablo Parrilo
چکیده

The worst-possible Value-at-Risk for a non-decreasing function of dependent risks is known when or the copula of the portfolio is bounded from below. In this paper we analyze the properties of the dependence structures leading to this solution, in particular their form and the implied functional dependence between the marginals. Furthermore, we criticise the assumption of the worst-possible scenario for VaR-based risk management and we provide an alternative approach supporting comonotonicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Value-at-Risk-Based Risk Management Using Options

This paper investigates optimal portfolio and wealth strategy of an institutional investor under the Value-at-Risk (VaR) constraint in an economy under jump diffusion. We show that overlooking or underestimating jump risk factor could be the cause of failure to satisfy the VaR constraint in the recent financial crisis for many financial institutions. We also find that the introduction of the ju...

متن کامل

Extreme VaR scenarios in higher dimensions

The dependence scenario yielding the worst possible Value-at-Risk at a given level α for X1 + · · · + Xn is known for n = 2. In this paper we investigate this problem for higher dimensions. We provide a geometric interpretation highlighting the shape of the dependence structures which imply the worst possible scenario. For a portfolio (X1, . . . ,Xn) with given uniform marginals, we give an ana...

متن کامل

Introduction to the Theory of Probabilistic Functions and Percentiles (value-at-risk)

Probabilistic and quantile (percentile) functions are commonly used for the analysis of models with uncertainties or variabilities in parameters. In nancial applications, the percentile of the losses is called Value-at-Risk (VaR). VaR, a widely used performance measure, answers the question: what is the maximum loss with a speci ed con dence level? Percentiles are also used for de ning other re...

متن کامل

Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization

Worst-case risk measures refer to the calculation of the largest value for risk measures when only partial information of the underlying distribution is available. For the popular risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), it is now known that their worst-case counterparts can be evaluated in closed form when only the first two moments are known for the unde...

متن کامل

A Value-At-Risk Approach for Robust Management of Electricity Power Generation

In this paper, we apply Value-At-Risk (VaR) approaches on the problem of yearly electric generation management. In a classical approach, the future is modelled as a markov chain and the goal is to minimize the average generation cost over this uncertain future. However, such a strategy could lead to big financial losses if worst case scenarios occur. The two VaR approaches we propose, precisely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004